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Objective 

To quantify and understand the 
impacts of global climate and 
emission changes from the present 
to 2050 on U.S. water quality, 
focusing on the nitrogen cycle. 



Approach 

 The objective will derive from the application of a unique, state-of-the-art, 
integrated modeling system that couples a global climate-chemical 
transport component with a mesoscale regional climate-hydrology-air 
quality-water quality component over North America. 

 The system predicts the interactive dynamical, physical and biogeochemical 
processes that govern the movement of water and pollutants in the air and 
on land (surface, subsurface, streams, plants, human). 

 The system incorporates multiple alternative model configurations 
representing the likely range of climate sensitivity and biogeochemistry 
response under the conceivable anthropogenic emissions scenarios to 
rigorously assess the result uncertainty for improving risk analysis.  
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Hydrologic Cycle Simulated by SWAT 
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Nitrogen Cycle 

 Nitrogen include 4 forms:  
    -Ammonia (NH3) 
    -Nitrite (NO2-) 
    -Nitrate (NO3-) 
    -Nitrogen gas (N2) 



Upper Mississippi River Basin 

SWAT Application in Watershed Basin 
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Total Nitrogen leaving 8-digit Reach
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8-digit Loadings of Total Nitrogen
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CWRF Physics Options 
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Frequency distribution of root mean square errors (RMSE, mm/day) for the interannual variations of seasonal 
precipitation over land predicted by the CFS and CWRF based on 5 ensemble members during wintertime of 
1982-2008. Seasonal precipitation is binned at an interval of 0.1 mm/day. After Yuan and Liang (2011, GRL). 

CWRF Downscaling Seasonal Climate Prediction over the United States  



CWRF Terrestrial Hydrology 
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CMAQ Captures Depositions 



CMAQ Projected N Deposition Change  

When changes in both climate and emissions are 
incorporated, the two scenarios project opposite changes 
of nitrate wet deposition in the Midwest and Northeast: 
increases under A1Fi but decreases under A1B with similar 
magnitudes of 400-1000 mg/m2/year. 

The wet deposition changes resemble dry deposition in 
spatial pattern but with substantially larger magnitudes by 
a factor of 40-50. Thus the wet deposition is the 
predominant sink for nitrate aerosols.  



CMAQ projected differences in annual total nitrate deposition (mg/m2/year) 
between future (2048-2052) and present (1995-1999) 
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Predictive Water Quality 
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Build National Predictive Capability 
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Couple the System Components 



SWAT requires diversity information with thousands of data files. This prohibits 
effective coupling with CWRF for parallel computing. Intensive and careful re-
engineering work has been done to solve this problem. We first classified all 
input and output variables according to their function and the order of their 
usage in the program, and then wrote all categories in the sequential order into 
one binary file.  

Build I/O Data Processor 

There are three categories: 
variables that will be 
initialized by reading 
operation, variables that 
are not used in the I/O 
operation, and variables 
that are output. As such, 
only a reading interface is 
needed between input 
data processing and model 
predicting component.  



Develop the transmissive interface between 
the basin based SWAT and gridded CWRF 
 
Requirement: 
• Conservation of intensity or flux 
• Real-time transaction 
• High effectiveness 
 
Solution: 
• Area weighted method (now) 
• Flux coupler approach (future) 

BasinGrid Information 



SWAT Subbasins Distribution with CWRF grids 

 More than 70% subbasin have 2 or more CWRF grids 

Resolution 
can be 

refined 

CWRF 30km 
is comparable to 
SWAT 8-digit subbasin 
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Streamflow Comparison  

Correlation coefficient of PSWAT streamflow 
with USGS observations is 0.88 



Streamflow at the Colorado River 

The original SWAT simulates it very poorly 
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Reservoir volume 
distribution in each subbasin 



Streamflow at the Colorado River 

After incorporating the reservoir effects, the streamflow 
is improved remarkably. But large errors still exist in 3 
abundant precipitation years, indicating that the reservoir 
module need to be further refined. 
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Streamflow Stations from USGS 

 For examination of the 
performance of the PSWAT 
running over the continuous 
U.S., we collected the USGS 
streamflow historic dataset 
more than 1500 stations 

 Extracted the stations with 
monthly data records of >20 
days, and calculated the 
correlation coefficient 
between observed and 
simulated interannual 
streamflow variations 



Streamflow Correlation Distribution 

 The performance 
in the eastern and 
central U.S. is 
better than the 
western mountain 
semi-arid region 

 The poor skill may 
partially result 
from precipitation 
observational data 
uncertainty  
 





Simulated and Observed Nitrogen 

The observed data from monitoring 
large rivers in the national stream 
quality accounting network (NASQNA) 



PSWAT Nitrogen Distribution 



PSWAT is Built to Predict Water Change 

 Predictive SWAT (PSWAT) has been developed, tested, and is ready for 
online coupling with CWRF, further refinement and system optimization 

 It incorporates atmospheric information (precipitation, temperature, 
radiation, wind, humidity, and nitrogen deposition) and point sources 
and management strategies 

 It captures the streamflow characteristics in most regions of the U.S. 

 It provides a unique modeling tool to better understand and predict 
potential consequences of climate change on hydrologic processes 

 Its application next will enable us to identify, at the national scale, 
relative vulnerabilities of U.S. water resources to global change and 
provide scientific guidance for developing adaptive strategies 
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